
Séminaire Lotharingien de Combinatoire 78B (2017) Proceedings of the 29th Conference on Formal Power
Article #48, 12 pp. Series and Algebraic Combinatorics (London)

Refined Cyclic Sieving
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Abstract. Reiner-Stanton-White (2004) defined the cyclic sieving phenomenon (CSP)
associated to a finite cyclic group action and polynomial. A key example arises from
the length generating function for minimal length coset representatives of a parabolic
quotient of a finite Coxeter group. In type A, this result can be phrased in terms of the
natural cyclic action on words of fixed content.

There is a natural notion of refinement for many CSP’s. We formulate and prove a
refinement of the aforementioned CSP arising from tracking the cyclic descent type of
a word in addition to its content. The argument presented is completely different
from Reiner-Stanton-White’s representation-theoretic approach. It is combinatorial and
largely, though not entirely, bijective.

A building block of our argument involves cyclic sieving for shifted subset sums, which
also appeared in Reiner-Stanton-White. We give an alternate, largely bijective proof of a
refinement of this result by extending some ideas of Wagon-Wilf (1994).
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1 Introduction

Since Reiner, Stanton, and White introduced the cyclic sieving phenomenon (CSP) in 2004 [4],
the cyclic sieving phenomenon has become an important companion to any cyclic action
on a finite set. Some remarkable examples of the CSP involve the action of a Springer
regular element on Coxeter groups [4, Theorem 1.6], the action of Schutzenberger’s
promotion on Young tableaux of fixed rectangular shape [5], and the creation of new
CSPs from old using multisets and plethysms with homogeneous symmetric functions [2,
Proposition 8]. See [6] for a thorough introduction to the cyclic sieving phenomenon by
Sagan.

Definition 1.1. Suppose Cn is a cyclic group of order n generated by σn, W is a finite
set on which Cn acts, and f (q) ∈N[q]. We say the triple (W, Cn, f (q)) exhibits the cyclic
sieving phenomenon (CSP) if for all k ∈ Z,

#Wσk
n := #{w ∈W : σk

n · w = w} = f (ωk
n), (1.1)

where ωn is a fixed primitive n-th root of unity.
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Our main result, Theorem 1.4, is a refinement of the type A case of [4, Theorem 1.6],
which we now summarize; see Section 2 for missing definitions. Consider words in the
alphabet P := {1, 2, . . .}. Given a word w = w1 · · ·wn, let cont(w) denote the content of w
and write

Wα := {words w : cont(w) = α} (1.2)

for the set of words with content α � n. Write maj(w) for the major index of w. The cyclic
group Cn acts on Wα by rotation.

In many instances of cyclic sieving, f (q) is a statistic generating function on a set W.
Given a statistic stat : W →N, we form the generating function

Wstat(q) := ∑
w∈W

qstat w ∈N[q]. (1.3)

We say two statistics stat, stat′ : W → N are equidistributed on W if Wstat(q) = Wstat′(q).
The following expresses an interesting result of Reiner, Stanton, and White in our notation.

Theorem 1.2. [4, Proposition 4.4] Let α � n. The triple (Wα, Cn, Wmaj
α (q)) exhibits the CSP.

Definition 1.3. A refinement of a CSP triple (W, Cn, Wstat(q)) is a CSP triple (V, Cn, Vstat(q))
where V ⊂W has the restricted Cn-action.

If (V, Cn, Vstat(q)) refines (W, Cn, Wstat(q)), then so does (U, Cn, Ustat(q)), where U =
W − V. Thus a refinement partitions W into smaller CSPs with the same statistic. In
Section 3, we define a statistic on words, flex, which is universal in the sense that it refines
to all Cn-orbits. Such universal statistics are essentially equivalent to the choice of total
orderings for each orbit O of W.

We partition words of fixed content into fixed circular descent type (CDT). One computes
CDT(w) by building up w through adding all 1’s, 2’s, . . ., and counting the number of
circular descents introduced at each step. See Section 4 for the precise definition. We write
the set of words with fixed content and circular descent type as

Wα,δ := {words w : cont(w) = α, CDT(w) = δ}. (1.4)

Theorem 1.4. Let α � n, and let δ be any weak composition. The triple

(Wα,δ, Cn, Wmaj
α,δ (q))

exhibits the CSP.

Indeed, we derive an explicit product formula for Wmaj
α,δ (q) mod (qn − 1) involving

q-binomial coefficients, see Theorem 4.11.
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Reiner-Stanton-White’s proof of Theorem 1.2 builds on a representation-theoretic
result due to Springer [7, Proposition 4.5]. For Theorem 1.4, we have instead considered
the problem of finding a bijective proof, which we interpret precisely as the problem
of finding a bijective proof that flex and maj are equidistributed mod n on Wα,δ. Our
argument is highly combinatorial, but it is not entirely bijective. Finding an explicit
bijection would be quite interesting.

A key building block of our proof of Theorem 1.4 involves cyclic sieving on subsets.
We describe a refinement of this result, Theorem 5.5, by restricting to subsets satisfying
certain gcd requirements.

The rest of this extended abstract is organized as follows. In Section 2, we recall
combinatorial background. In Section 3, we define the flex statistic. In Section 4, we
decompose words with fixed content and circular descent type and summarize proofs
of the product formula, Theorem 4.11, and our main result, Theorem 1.4. Section 5
gives an alternative proof of refined cyclic sieving on subsets using a method inspired by
Wagon-Wilf [8]. Many of the proofs are omitted or summarized due to space constraints.
They will be included in a forthcoming version of this article [1].

2 Combinatorial Background

In this section, we briefly introduce combinatorial notions on words and fix our notation.
We use the alphabet of positive integers P := {1, 2, . . .} throughout. A word w of length n
is a sequence w = w1w2 · · ·wn of letters wi ∈ P. Let |w| denote the length of a word w.
The descent set of w is Des(w) := {1 ≤ i < n : wi > wi+1} and the number of descents
is des(w) := # Des(w). The major index of w is maj(w) := ∑i∈Des(w) i. The inversion
number of w is inv(w) := #{1 ≤ i < j ≤ n : wi > wj}. The cyclic descent set of w is
CDes(w) := {1 ≤ i ≤ n : wi > wi+1}, where now the subscripts are taken mod n, and
cdes(w) := # CDes(w). We use lower dots between letters to indicate cyclic descents and
upper dots to indicate cyclic ascents throughout the paper, as in the following example.

Example 2.1. If w = 155.3.155.3. = 1˙5˙531˙5˙53, then |w| = 8, Des(w) = {3, 4, 7}, des(w) =
3, CDes(w) = {3, 4, 7, 8}, cdes(w) = 4, maj(w) = 14, and inv(w) = 9.

A composition or weak composition of n is a finite sequence (α1, α2, . . . , αm) of non-
negative integers adding up to n, typically denoted α � n. A strong composition additionally
requires each αi 6= 0. The content of a word w, denoted cont(w), is the sequence α whose j-
th part is the number of j’s in w. For a word w of length n, cont(w) is a weak composition
of n. We write

Wn := {words w : |w| = n}, (2.1)
Wα := {w ∈Wn : cont(w) = α}. (2.2)
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The cyclic group Cn := 〈σn〉 of order n acts on Wn and Wα by

σn · w1 · · ·wn−1wn := wnw1 · · ·wn−1.

The set of all words in P is a monoid under concatenation. A word is primitive if it
is not a power of a smaller word. Any non-empty word w may be written uniquely as
w = v f for f ≥ 1 with v primitive. We call |v| the period of w, written period(w), and
f the frequency of w, written freq(w). The orbit of w ∈ Wn under rotation is a necklace,
usually denoted [w]. We have period(w) = #[w] and freq(w) · period(w) = |w|. Content,
primitivity, period, frequency, and cdes are all constant on necklaces.

Example 2.2. The necklace of w = 15531553 = (1553)2 is

[w] := {15531553, 55315531, 53155315, 31553155} ⊂W(2,0,2,0,4) ⊂W8,

which has period 4, frequency 2, and cdes 4.

Reiner-Stanton-White gave several equivalent conditions for a triple (W, Cn, f (q)) to
exhibit the CSP. In place of (1.1) in Definition 1.1, we may instead require

f (q) ≡ ∑
orbits O⊂W

qn − 1
qn/|O| − 1

(mod qn − 1), (2.3)

where the sum is over all orbits O under the action of Cn on W, and for d | n,

qn − 1
qd − 1

=
n/d−1

∑
i=0

qid 6≡ 0 (mod qn − 1). (2.4)

We refer the interested reader to [4, Proposition 2.1] for the proof of the equivalence of
(1.1) and (2.3).

For a set S, write(
S
k

)
:= {k-element subsets of S},

((
S
k

))
:= {k-element multisubsets of S}.

We use the following q-analogues for n, k ∈ Z≥0, where "sum” is the sum of the elements
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in a set or multiset:

[n]q = 1 + q + · · ·+ qn−1, (2.5)
[n]q! = [n]q[n− 1]q . . . [1]q, (2.6)(

n
α1, . . . , αm

)
q
=

[n]q!
[α1]q! . . . [αm]q!

, (2.7)(
n
k

)
q
=

(
n

k, n− k

)
q
= q−(

k
2)

(
[0, n− 1]

k

)sum

(q), (2.8)((
n
k

))
q
=

(
n + k− 1

k

)
q
=

((
[0, n− 1]

k

)) sum

(q). (2.9)

For α = (α1, . . . , αm) � n, maj and inv are equidistributed on Wα with

Wmaj
α (q) = Winv

α (q) =
(

n
α1, . . . , αm

)
q

(2.10)

by a classical result of MacMahon [3]. Despite (2.10), maj and inv are not equidistributed
modulo n on Wα,δ in general, so (Wα,δ, Cn, Winv

α,δ (q)) does not exhibit the CSP.

3 The Flex Statistic

Definition 3.1. Let lex(w) denote the index at which w appears when lexicographically
ordering the necklace [w], starting from 0. Let flex be the product

flex(w) := freq(w) lex(w).

For example, the necklace in Example 2.2 has lex statistics 0, 3, 2, 1, respectively, so that
lex(55315531) = 3 and flex(55315531) = 2 · 3 = 6. The following is a direct consequence
of (2.3).

Lemma 3.2. For any necklace N of length n, (N, Cn, Nflex(q)) exhibits the CSP.

Thus, for any set W ⊂ Wn on which Cn acts, (W, Cn, Wflex(q)) exhibits the CSP. In
this sense, flex is a “universal CSP statistic on words”. By contrast, for instance when
N = [123123], the triple (N, C6, Nmaj(q)) does not exhibit the CSP. In this sense, maj is a
not a universal CSP statistic on words. Indeed, it follows from Lemma 3.2 that Theorem 1.4
is equivalent to maj and flex being equidistributed modulo n on Wα,δ. It would be
interesting to find a natural, explicit bijection proving this version of Theorem 1.4.
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Open Problem 3.3. For α � n and any composition δ, find a bijection ϕ : Wα,δ → Wα,δ
satisfying

maj(ϕ(w)) ≡ flex(w) (mod n). (3.1)

4 Cyclic Descent Type and Major Index

The main purpose of this section is to give a product formula for Wmaj
α,δ (q) modulo qn − 1,

Theorem 4.11. The q = 1 specialization gives a formula for #Wα,δ, Lemma 4.10. We
conclude this section by summarizing our proof of the main result, Theorem 1.4, given
Theorem 4.11.

4.1 Cyclic Descent Type

We begin by defining cyclic descent type. Throughout this section, w is a word with
cont(w) = α = (α1, . . . , αm), a strong composition of n ≥ 1, and k circular descents, so
that m = max(w). Let w(i) denote the subsequence of w with all elements larger than i
removed. We have a “filtration”

∅ � 1α1 = w(1) � w(2) � · · · � w(m−1) � w(m) = w,

where u � v means that u is a subsequence of v. The cyclic descent type of a word w,
denoted CDT(w), is the sequence which tracks the number of new cyclic descents at each
stage of the filtration:

CDT(w) := (cdes w(1), cdes w(2) − cdes w(1), . . . , cdes w(m) − cdes w(m−1)). (4.1)

Note CDT is constant on necklaces since rotating w rotates each w(i). Also, CDT(w) is a
weak composition of cdes(w) = k. Recall our earlier notation (1.4):

Wα,δ := {w ∈Wn : cont(w) = α, CDT(w) = δ}.

Example 4.1. Suppose w = 143124114223, so cont(w) = (4, 3, 2, 3),

w(1) = 1111 cdes w(1) = 0,

w(2) = 112.1122. cdes w(2) = 2,

w(3) = 13.12.11223. cdes w(3) = 3,

w(4) = 14.3.124.114.223. cdes w(4) = 5.

Hence, CDT(143124114223) = (0, 2− 0, 3− 2, 5− 3) = (0, 2, 1, 2).
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4.2 Runs, Falls, and Major Index

We describe a way to create words with a fixed content and CDT in terms of insertions
into runs and falls. We organize this procedure into a tree whose edges are labelled by
sets and multisets (Definition 4.8). Lemma 4.7 describes changes in the major index upon
traversing an edge of this tree, which gives Theorem 4.11 when iteratively applied.

Definition 4.2. A fall in w is a maximal set of distinct indexes i, i + 1, . . . , j− 1, j such that
wi > wi+1 > · · · > wj, where we take indices modulo n. A run in a non-constant word w
is a maximal set of distinct indexes i, i + 1, . . . , j such that wi ≤ wi+1 ≤ · · · ≤ wj, where
we take indices modulo n. The constant word w = `n by convention has no runs, though
this case will not actually appear in our arguments.

Each letter is part of a unique run and a unique fall, except when w = `n is constant.
It is easy to see that with these conventions, w has n− cdes(w) falls and cdes(w) runs.
We index falls from 0 starting at the fall containing the first letter of w, and we do the
same with runs.

Example 4.3. Let w = 26534611 = 26.5.346.11 = 2˙653˙4˙61˙1 ,̇ where lower dots indicate
cyclic descents and upper dots indicate cyclic weak ascents. The three runs of w are
1126, 5, 346, with respective indexes 0, 1, 2. The five falls of w are 2, 653, 4, 61, 1 with
respective indexes 0, 1, 2, 3, 4.

Definition 4.4. Fix a letter ` not in w. Pick a subset F of the falls of w. We insert ` into
the falls F by successively inserting ` into each fall wi > wi+1 > · · · > wj in F so that
wi · · · ` · · ·wj is still decreasing.

Similarly, we may fix a letter ` and pick a multisubset R of the runs of w. We insert `
into the runs R by successively inserting ` into each run wi ≤ wi+1 ≤ · · · ≤ wj in R so that
wi · · · ` · · ·wj is still weakly increasing.

In either case, if we have a choice between inserting a letter at either the beginning of
w or at the end of w, we choose to insert at the beginning of w. When inserting ` into
a run already containing `, the resulting word is independent of precisely which of the
possible positions is used.

Example 4.5. Let w = 2˙653˙4˙61˙1 .̇ Insert 7 into the falls of w with indexes 0 and 3 to suc-
cessively obtain 72˙653˙4˙61˙1˙ and then w′ := 72˙653˙4˙761˙1 .̇ Note that w′ = 7.26.5.347.6.11
has two more runs than w. Now insert 7 into the runs of w′ with multiset of indexes
{0, 2, 3, 3} to successively obtain 77.26.5.347.6.11, 77.26.57.347.6.11, 77.26.57.347.6.11, and
w′′ := 77.26.57.3477.6.11.

It will shortly prove convenient to restrict to words ending in a 1. Let

W̃n = {w ∈Wn : w ends in a 1},
W̃α,δ = {w ∈Wα,δ : w ends in a 1}.
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Inserting a letter into a subset of the falls and then a multisubset of the runs forms the
basis of our procedure for constructing words in W̃α,δ.

Definition 4.6. Fix w ∈ W̃n, a letter ` not in w, and

F ⊂ [0, |w| − cdes w− 1] and R ⊂
mult.

[0, cdes w + |F| − 1]

where ⊂
mult.

denotes a multisubset. Let w′ be obtained by inserting ` into falls F of w, and

let w′′ be obtained by inserting ` into runs R of w′. We say w′′ is obtained by inserting the
triple (`, F, R) into w. In particular, cdes w′′ = cdes w + |F|. By keeping track of the effect
of each insertion on maj, one can show the following.

Lemma 4.7. Suppose w′′ is obtained by inserting the triple (`, F, R) into w ∈ W̃n. Then,

maj(w′′)−maj(w) =

(
|F|+ 1

2

)
+ (cdes w)(|F|+ |R|) + |F||R|+ ∑

f∈F
f − ∑

r∈R
r. (4.2)

Definition 4.8. Fix a strong composition α of n and δ � k, and let n` := α1 + · · ·+ α` and
k` := δ1 + · · ·+ δ`. Construct a rooted, vertex- and edge-labeled tree Tα,δ recursively as
follows. Begin with root 1α1 . For ` = 2, 3, . . ., for each leaf w, and for each triple (`, F, R)
with

F ∈
(
[0, n`−1 − k`−1 − 1]

δ`

)
and R ∈

((
[0, k` − 1]

α` − δ`

))
,

add an edge labeled by (`, F, R) from w to w′′ where w′′ is obtained by inserting the triple
(`, F, R) into w.

Example 4.9. Let α = (4, 2, 3) and δ = (0, 2, 1). The following is the subgraph of Tα,δ
consisting of paths from the root to leaves that are rotations of 112113323:

1111

211211 121121

332311211 211332311 133231121 121133231

(2, {0, 2},∅) (2, {1, 3},∅)

(3, {0}, {0, 1})
(3, {2}, {1, 2})

(3, {1}, {0, 1}) (3, {3}, {1, 2})

For this full Tα,δ, the root has (4
2) = 6 children since 1111 has 4 falls. Each child of the

root itself has (4
1)
(
(2

2)
)
= 12 children. Hence, Tα,δ has 72 leaves. The cyclic rotations of

112113323 appearing as leaves in Example 4.9 are exactly those ending in 1.
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Lemma 4.10. Let α = (α1, . . . , αm) be a strong composition of n and δ = (0, δ2, . . . , δm) � k.
Then

#Wα,δ =
n
α1

m

∏
i=2

(
ni−1 − ki−1

δi

) ((
ki

αi − δi

))
(4.3)

In particular, Wα,δ 6= ∅ if and only if

0 ≤ δi ≤ αi for 1 ≤ i ≤ m,
δ1 + · · ·+ δi+1 ≤ α1 + · · ·+ αi for 1 ≤ i < m.

Theorem 4.11. Suppose α = (α1, . . . , αm) is a strong composition of n and δ = (δ1, . . . , δm) � k.
Set ni := α1 + · · ·+ αi, ki := δ1 + · · ·+ δi, and d = gcd(n, k). Then, modulo qn − 1,

Wmaj
α,δ (q) ≡ d

α1

(
qn − 1
qd − 1

)
q(

k
2)+∑m

i=2 (
δi
2 )−α1

m

∏
i=2

(
ni−1 − ki−1

δi

)
q

((
ki

αi − δi

))
q

(4.4)

Lemma 4.10 and Theorem 4.11 are consequences of the structure of the tree Tα,δ and
Lemma 4.7.

4.3 Proof Sketch of the Main Theorem

From the explicit formula in Theorem 4.11, one may show the coefficient of qi in
Wmaj

α,δ (q) (mod qn − 1) depends only on i modulo g := gcd(α1, . . . , αm, δ1, . . . , δm). We

then show the triple (Wα,δ, 〈σn/g
n 〉, Wmaj

α,δ (q)) exhibits the CSP using products of CSP’s on
sets and multisets. Finally, we combine these two observations to extend this CSP to Cn
to achieve Theorem 1.4.

5 A Refinement of the Cyclic Sieving Phenomenon on Sub-
sets

Our proof of Theorem 1.4 uses products involving the following CSP triples, first observed
by Reiner, Stanton, and White.

Theorem 5.1. [4, Theorem 1.1]. Let Cn act on ([0,n−1]
k ) by incrementing values modulo n. Then((

[0, n− 1]
k

)
, Cn,

(
n
k

)
q

)

exhibits the CSP.
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We refer the reader to Sections 3 and 4 of [4] for proofs of Theorem 5.1 via representation
theory or direct calculation, respectively. We give an alternative proof inspired by a
method of Wagon and Wilf [8, §3], who characterized when the subset sum statistic is
equidistributed modulo m. The main novelty of our approach is Theorem 5.5, which gives
a refinement of a related CSP using a shifted sum statistic to subsets satisfying certain
gcd requirements. Throughout this section, we fix n and k and let S := ([0,n−1]

k ).

Definition 5.2. For all r | n and j ∈ [1, n
r ], let

I j
r := [(j− 1)r, jr− 1],

which we call an r-interval. Let Cr, the cyclic group of order r, act on S = ([0,n−1]
k ) by

simultaneous rotation of r-intervals. For example, when n = k = 6, the generator for C3
acts on the 6-interval by the permutation (012)(345). Finally, let

sum′(A) := ∑
a∈A

a−
k−1

∑
i=0

i = ∑
a∈A

a−
(

k
2

)
. (5.1)

Recall from (2.8) that (
[0, n− 1]

k

)sum′

(q) =
(

n
k

)
q
. (5.2)

Using (5.2), we may restate Theorem 5.1 as saying that (S, Cn, Ssum′(q)) exhibits the
CSP, where Cn acts on S by rotation. Let C′r denote the unique subgroup of size r in Cn.
The action of Cr on S in Definition 5.2 differs from this restricted action of C′r, but they
are easily seen to be isomorphic. Thus, (S, C′r, Ssum′(q)) exhibits the CSP as well. We will
thus use the action of Cr on S in Definition 5.2 for the rest of this section.

Definition 5.3. Let

Ga,b = {A ∈ S : gcd(a, #(A ∩ I1
a ), #(A ∩ I2

a ), . . . , #(A ∩ In/a
a )) = b}.

In particular, Ga,b is empty unless b | a. Also, for any divisibility chain D = dp | dp−1 |
· · · | d1 | n, let

GD = Gn,d1 ∩ Gd1,d2 ∩ · · · ∩ Gdp−1,dp . (5.3)

Example 5.4. If n = 4, k = 2, then

G1|2|4 = G4,2 ∩ G2,1 = {{0, 2}, {0, 3}, {1, 2}, {1, 3}},
G2|2|4 = G4,2 ∩ G2,2 = {{0, 1}, {2, 3}}.
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Theorem 5.5. Fix n, k ∈ Z≥0, let S := ([0,n−1]
k ), and let D be a divisibility chain beginning with

e | d and ending with n. Then, Cd acts on S and GD by simultaneous rotation of d-intervals, and

(GD, Cd, Gsum′
D (q))

exhibits the CSP and refines the CSP triple (S, Cd, Ssum′(q)).

Example 5.6. Suppose n = 4, k = 2, D = 1 | 2 | 4, so GD = G4,2 ∩ G2,1. Then, GD has C2
orbits {{0, 2}, {1, 3}} and {{1, 2}, {0, 3}} and

Gsum′
D (q) = q1 + 2q2 + q3 ≡ 2 · q2 − 1

q− 1
(mod q2 − 1).

Thus, (G1|2|4, C2, Gsum′
1|2|4 (q)) exhibits the CSP.

Theorem 5.5 includes Theorem 5.1 in the special case when D = gcd(n, k) | n. Our
proof of Theorem 5.5 proceeds by induction on d. The cases where d = 1 or e = d are easy
to verify on their own. Otherwise, we have e < d, and we use the induction hypothesis to
deduce (GD, Ce, Gsum′

D (q)) exhibits the CSP.
In order to extend this CSP up to Cd, we replace Ce by C′e, the unique subgroup of

size e in Cd, which is valid since the actions of Ce and C′e on GD are isomorphic. We then
apply a straightforward extension lemma to prove Theorem 5.5.
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